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Abstract
A concept introduced previously as an approach for finding superposition
formulae for solutions of nonlinear PDEs and an explanation of various types of
wave interactions in such systems is developed further, both from the theoretical
and technical point of view. In its framework, which is the framework of the
multidimensional superposition principle, a straightforward and self-consistent
technique for constructing the related invariant manifolds in a soliton case is
proposed. The method is illustrated by simple examples, which, in particular,
show in principle the generality that exists between superposition formulae for
conventional linear and nonlinear soliton equations. The demonstration that
the so-called truncated singular expansions associated can be with some sort
of the above soliton invariant manifolds is also presented.

PACS numbers: 02.30.Jr, 02.30.Ik, 05.45.Yv

1. Introduction

Although the concept proposed in [1] for finding superposition laws for solutions of PDEs
imposes no restrictions on their type, the advantages of that approach become most obvious in
the case of soliton equations, and perhaps its most significant feature is the explanation of the
soliton interaction mechanism without involving the inverse scattering transform (IST) [2].

In the same paper [1] a structure of general solutions describing interactions of a soliton
with other, arbitrary, perturbations was shown practically for nonlinear PDEs to which
the truncated singular expansions technique [3, 4] is applicable. Although the majority of
known solitonic models integrable by the IST are found among the last ones, there also exist
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‘nonintegrable’ soliton systems interesting for applications, see e.g. [5, 6]. From this point of
view, developing a general technique in the framework of the multidimensional superposition
approach is very important. This is the goal of the present work.

2. The multidimensional superposition principle and invariant manifolds of
the soliton type

2.1. The definition of invariant manifolds of the soliton type

Suppose we have some PDE, linear or nonlinear, for the sake of definiteness, of evolution type
in 1D, and for simplicity not depending explicitly on the independent variables

∂

∂t
u = E

(
∂

∂x
; u

)
u = u(x, t) (1)

with the function u(x, t) being the projection

u(x, t) = u(x1, x2, t)|x1=x2=x (2)

of another function, where the original spatial variable x is split. In doing so, the latter has to
satisfy the following equation:

∂

∂t
u = E

(
∂

∂x1
+

∂

∂x2
; u

)
u = u(x1, x2, t) (3)

that will be called the d-adjoint to equation (1). Let this last equation for u(x1, x2, t) in its
turn have an invariant manifold [7] such that among all the differential relations describing it
there is one of the form

Q(u, ux1 , . . . , ukx1) = 0 k ∈ N. (4)

Respectively, the remaining relations (if any) will be of the form

Gi

(
∂

∂x2
; u, ux1 , . . . , u(k−1)x1

)
= 0 i = 1,m;m ∈ N (5)

taking into account the elimination of terms with derivatives ∂
∂t

and ∂k

∂xk in view of (3), (4).
Here and further (e.g., in proposition 1) we will suppose without loss of generality that
all the necessary equations (here (3) and (4)) are formally resolvable with respect to such
leading derivatives. Moreover, as will be seen from the examples, when an initial NPDE is a
polynomial, it presents no technical problem.

In the general case, invariant manifolds just narrow the set of possible solutions.
Introducing here equation (4) in the form of an ODE (this is the only limitation), we
demand separation of the variables x1 and x2 (in the generalized sense analogous to [8]).
In our original space this corresponds to splitting of the solution u(x1, x2, t) into components
that can be described independently of each other. Moreover, one of them associated with
x1 appears to be fixed, in contrast to the component depending on x2. In fact, (4) fully
determines the dependence with respect to x1, and simultaneously introduces the new functions
ϕj (x2, t), j = 0, k − 1 as parameters. The remaining equations, equations (5), in their turn
determine a linkage between the ϕj . As a result, the corresponding solutions (2) collapse into
the independent (spatially) ingredients associated with the different independent variables. In
doing so, the general structure of u or a superposition formula for them is fixed and uniquely
determined by (4), (5). Such a paradigm was called a multidimensional superposition principle
[1]. The fact that here there exists some fixed and therefore stable component associated with
(4) may be interpreted as the presence of a soliton in a solution, and the solution u(x1, x2, t)
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itself can be interpreted as the soliton envelope with the parameters ϕj modulated by a
perturbation. Because of this it is logical to call equation (4) a soliton envelope equation, and
invariant manifolds of the above form invariant manifolds of the soliton type.

Note 1. All the aforesaid results are immediately generalized both to cases of any dimension
and to systems of equations. In so doing, splitting can be performed for all or only for part of
the independent variables, as required for a concrete investigation.

Note 2. Equations explicitly depending on the independent variables, e.g.,

∂

∂t
u = E

(
x; ∂

∂x
,

∂

∂t
; u

)
u = u(x, t) (6)

are considered in the same way. In the general case such a problem is, as usual, reduced to the
previous one for an appropriate system by means of the formal introduction of an auxiliary
dependent variable, so that finally we obtain the complete system

∂

∂t
u = E

(
X; ∂

∂x1
+

∂

∂x2
; u

)
u = u(x1, x2, t)

Xt = 0 Xx1 + Xx2 = 1 X = X(x1, x2)

instead of one equation. It is possible to investigate particular cases with some concrete
dependence of the d-adjoint equation with respect to x1, x2

∂

∂t
u = E

(
x1, x2; ∂

∂x1
+

∂

∂x2
; u

)
u = u(x1, x2, t) (7)

compatible with the corresponding projection of (7) to (6).

Note 3. Analogously, there is no need to introduce the independent variables t, x1, x2 into (4),
(5) explicitly. A system

∂

∂t
u = E

(
∂

∂x
; u

)
u = u(x, t)

Xt = 0 Xx = 1 X = X(x)

Tt = 1 Tx = 0 T = T (t)

with the above type IMS can be considered instead.
It is necessary to emphasize one circumstance. Separation of the variables x1, x2 and the

existence of a SF for the related components do not yet signify their physical separation in
our observable x-space as well as the possibility of their separate existence. However, if this
takes place before and after a soliton–perturbation interaction, when in the space there is some
domain where the solution u(x1, x2, t) depends only on x1 (the ‘soliton’ variable) and another
domain where it depends already only on x2 (the ‘perturbation’ variable), the values of soliton
parameters (the asymptotical values of ϕj ) may be different, because they are determined by
perturbation asymptotes. In other words, in the general case a soliton before and after an
interaction is in different states. A standard phase shift or changes of the kink velocities and
wave numbers [6] are examples of such switching from one state to another.

The following examples, in spite of their triviality, well illustrate the essence of the
multidimensional superposition.

Example 1. Consider the conventional linear heat equation

ut − uxx = 0 u = u(x, t) (8)

and its d-adjoint for the function u(x1, x2, t)

ut − ux1x1 − 2ux1x2 − ux2x2 = 0 (9)
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It is easy to see that the latter, equation (9), exhibits the existence of the following IMS:

Q = ux1x1 − kux1 = 0 k = const
(10)

G = ux1x2 = 0

By this means, as a result, from (9) and (10) we have the SF

u = ϕ1 ekx1+k2t + ϕ0(x2, t) ϕ1 = const

where the ‘free’ function ϕ0(x2, t) has to satisfy an equation of the original form (8). Since
ϕ0(x2, t) can, in particular, be equal to zero, the component ϕ1 exp(kx1 + k2t) is also a solution
of the original equation.

Obviously, the above IMS or similar ones are suitable for any linear PDE in (1 + 1) D with
constant coefficients and just means that the Fourier mode can be added to an arbitrary solution.
Also, it is clear that for linear PDEs other IMSs corresponding to various superpositions can
be constructed.

Example 2. The equation

ut −
(

1 +
ux

u

)2
= 0 u = u(x, t)

is presumably the simplest nonlinearizable soliton equation. Its d-adjoint analogue

ut −
(

1 +
ux1 + ux2

u

)2
= 0 u = u(x1, x2, t) (11)

has the IMS

Q = ux1x1u − 2u2
x1

− uux1 = 0 G = ux1x2u − 2ux1ux2 = 0

which results in the following SF:

u = 1

ϕ1 ex1 + ϕ−1
0 (x2, t)

ϕ1 = const (12)

with ϕ0(x2, t) being a solution of the original form of the equation.
Here both a perturbation and the soliton part can exist separately. If ϕ0x2

(∞, t) = 0 or,
according to (11)

ϕ0(±∞, t) = t + θ±∞ θ±∞ = const

solutions (12) are reduced to the expression

ukink = 1

ϕ1 ex1 + (t + θ±∞)−1

corresponding to a kink with a time-dependent velocity and amplitude. Simultaneously, we
also have

u(+∞, x2, t) = 0 u(−∞, x2, t) = ϕ0(x2, t)

In other words, (12) may describe an interaction of the above kink with a localized perturbation.

In these examples both solutions in the SFs satisfy the initial equations. But as is
demonstrated below, such a situation may not be true in all cases.

Example 3. Let us consider the IMS

Q = −ux1x1u + 2u2
x1

+ kuux1 = 0 k = const
(13)

G = −ux1x2u + 2ux1x2 − kuux1 = 0
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for the equation

ut = u2 +
(ux1 + ux2

u

)2
u = u(x1, x2, t) (14)

d-adjoint to

ut = u2 +
(ux

u

)2
u = u(x, t).

When k = 0, we have from (13) and (14) the following SF:

u = 1

ϕ1x1 − (
ϕ2

1 + 1
)
t + ϕ0(x2, t)

ϕ1 = const.

And this solution describes an interaction of the pole solution

u = 1

ϕ1x1 − (
ϕ2

1 + 1
)
t

(15)

of the initial equation with another component that, however, is governed by

ϕ0t2
+ (2ϕ1)ϕ0x2

+ ϕ0
2
x2

= 0 (16)

that cannot be linked with (14) directly. This means that a perturbation can be observable only
during an interaction (in the domain when ux1 �= 0) and cannot exist separately, so that

u(∞, x2, t) = 0.

It is not superfluous to underline here that a perturbation and the pole solution themselves are
independent of each other. Moreover, if one looks at (15) and the linearized version of (16), it
is seen that the pole and small enough perturbations move with different velocities, ϕ1 + ϕ−1

1
and 2ϕ1, respectively.

The case with k �= 0 leads to the SF

u = 1

ϕ1 ek(x1−x2) + ϕ−1
0 (x2, t)

ϕ1 = const (17)

where only the function ϕ0 satisfies the initial equation. This SF has altogether a different
sense. In fact, we will obtain after projection (2)

u(x, t) = 1

ϕ1 + ϕ−1
0 (x, t)

so that (17) corresponds to the trivial one-parameter transformation.

2.2. Finding IMSs for equations with a polynomial nonlinearity

Now let us discuss some questions associated with finding the invariant manifolds (4), (5) for
equations (3) with a polynomial nonlinearity.

At present the formal theory of overdetermined differential systems such as (3)–(5) with
the above type nonlinearity has been developed adequately by itself. There exist a number of
approaches, and their computer implementations allowing one to work with such systems: to
prove their compatibility or, conversely, incompatibility, to bring them to some given form, in
particular to the involutory form and so on. Equations (3)–(5) are a typical example of such
a system, the compatible overdetermined system of NPDEs. The problem is that our goal
here is, namely, to determine the corresponding form of Q and Gi . Hence, for its solution
we should in turn first derive the determining equations to Q and Gi considering them as
unknown functions and their arguments as independent variables and then, after that, work
with these equations using, e.g., specialized computer algebra packages such as CRACK [9],
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RifSimp [10] or DiffGrob2 [11]. As a result, the existing theory and methods have to be
applied twice, both when constructing the above-mentioned equations to Q,Gi and when
solving them. Unfortunately, the programs existing for these purposes can be used only at the
second stage.

Our purpose here is not, and cannot be, to give a detailed description of an algorithm
for deriving the equations for Q, Gi and determining their possible form, although such an
algorithm reduces to a finite number of cross-differentiations, excluding some derivatives from
one equation by means of others, and so on. A description of such algorithms and the associated
theory (see, e.g., [12–14]) is a separate, special field of contemporary mathematics, on one
hand, it is beyond the scope of one or several papers and, on the other, exhaustively elucidated
in the related literature. However, some aspects associated with our specific problem and
the main principles need to be presented here. In so doing, knowledge of only basic notions
(such as the weight or ranking of variables, etc) is needed, all of which cannot be presented
in this work, but are well explained and are accessible, in particular, in the manuals of the
above-mentioned computer packages.

Below, the main principles and steps for finding IMSs, which are imagined to be most
optimal now in view of the form of (3)–(5), are presented.

In section 2.1 the form of IMSs has been indicated in quite broad outline. It has just been
said about the existence of two types of equations in an IMS: a soliton envelope equation and
linkage equations. In doing so, the latter can be brought to various forms, and instead of some
initial set of equations (5) we can use any equivalent set obtained by combination of them and
their differential consequences. Because of this it is necessary to chose some concrete form
for them that would allow us to effectively work with such equations and clearly formulate
their properties. For this, first of all, it is necessary to introduce a suitable derivative ranking.
This is the LEX ranking, such that a differentiation with respect to t has the highest weight, and
its order will be taken into account first, then analogously a differentiation on x2 and finally a
differentiation on x1. By this means, in our case the following ordering will take place:

ut � uαx2,kx1 � uαx2,(k−1)x1 � · · · � uαx2 � u(α−1)x2,kx1 � · · · � ux1 � u (18)

where α is the maximal available order of differentiation on x2 (for x1 this is obviously k).
With regard to the introduced ranking the following form of IMSs for a d-adjoint equation:

ut = E

[
u,

(
∂

∂x1
+

∂

∂x2

)
u, . . . ,

(
∂

∂x1
+

∂

∂x2

)n

u

]
u = u(x1, x2, t) n ∈ N

(19)

will be called canonical and used when finding IMSs:

(1) A soliton envelope equation is assumed to be resolved with respect to its leading derivative

ukx1 = q
(
u(k−1)x1 , u(k−2)x1 , . . . , ux1 , u

)
k ∈ N (20)

(2) Linkage equations (if any)

Gi

(
uαix2,ix1 , . . . , u

) = 0 αi ∈ N i = l, k − 1 0 � l � k − 1 (21)

(uαix2,ix1 corresponds to a leading (see (18)) derivative from the available ones in an
equation) cannot be simplified further by means of each other and equation (20) and
contain all their differential consequences on x1.
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Proposition 1. For equations (21) the relation

αl � αl−1 � · · · � αk−1 (22)

takes place.

Proof. This follows directly from the irreducibility requirement for equations (21) under the
above ranking. Indeed, assume that there exist some integers f and h (l � f < h � k−1) such
that αf < αh. Then differentiating the related equation Gf = 0 (h − f ) times with respect to
x1, one obtains the equation with the leading derivative uαf x2,hx1 . But, as a result, the equation
Gh = 0 can be simplified, because its leading derivative uαhx2,hx1 can be eliminated by using
the latter. �

Proposition 2. In the system (19)–(21) equation (20) and all of equations (21) with αj � n1,
where n1 is some integer, themselves constitute a compatible subsystem.

Proof. Since the compatibility conditions Gj x1
= 0 (j = l1, k − 1, l � l1) of such a

subsystem are part of the related conditions for the whole system (19)–(21) and do not contain
the derivatives uj1x2,j2x1 with j1 > n1, then they must be satisfied without regard for the
remaining equations (21) and, of course, without equation (19). �

Proposition 3. The number l corresponds to the number of ‘free’ function parameters in a
solution envelope.

Proof. Since the subsystem (21) contains all its differential consequences of x1, we can
consider it as the system of the (k− l) differential only on x2 equations to k functions vi = uix1

(i = 0, k − 1). By this means l functions vi remain free, corresponding to the availability of
l arbitrary, in this subsystem framework, functions of x2 (and t, of course) in the expression
for u. �

Note 4. Usually (soliton equations) l = 1, i.e. there exists the only ‘free’ function parameter
corresponding to arbitrariness in perturbation chosen. However, the cases l > 1 and l = 0 are
also possible. The latter means that the related SF describes superposition of a soliton only
with some specific perturbations. It does not mean, however, that superposition with arbitrary
perturbations is impossible, because for this it may be necessary to consider a higher order
IMS (i.e. assuming a higher number of modulated parameters in a soliton envelope). For our
purposes we will further suppose that l �= 1.

Proposition 4. For the greatest value αl in (22) the relation

αmax = αl � n(k − l)

is true.

Proof. Indeed, the compatibility condition for (19) and (20) ut,kx1 − ukx1,t = 0 is an expression
depending on the derivatives uj1x2,j2x1 with j1 � n1 � n (in a nondegenerate case—when it is
not satisfied identically). Respectively, this demands the availability of the equations Gi1 = 0
with αi1 � n1 in (21). These equations are compatible with (20) (see proposition 2) but
optionally with (19). In the last case equations with αi2 � n2 � n1n � n have to be
subject to (21) in order to satisfy the above-mentioned compatibility conditions ∂

∂t
Gi1 = 0.

Analogously, if these new equations Gi2 = 0 are incompatible with (19) directly, the presence
of the equations with αi2 � n2n � 3n is necessary, and so on. Since the quantity of
equations (21) is limited (proposition 3), we arrive at the above estimation. �
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Next, on the strength of the form of equation (19), when finding IMSs, it is more convenient
to work with the operators ∂

∂x1
and Dx = ∂

∂x1
+ ∂

∂x2
instead of ∂

∂x1
and ∂

∂x2
. (Further, for the

latter we will again use the familiar subscript notation

ux ≡ Dxu =
(

∂

∂x1
+

∂

∂x2

)
u

(23)

uix ≡ Di
xu =

(
∂

∂x1
+

∂

∂x2

)i

u i ∈ N.

It is necessary to remember, however, that by this the composite differential operator is meant
rather than simply derivatives.) Transformation of equations (19)–(21) from one form to
another is trivial and unique (with regard to (20)). It is essential here that under the above
ranking (18) and its Dx-operator version

ut � uαx,kx1 � uαx,(k−1)x1 � · · · � uαx � u(α−1)x,kx1 � · · · � ux1 � u

the transformation

uj1x,j2x1 = uj1x2,j2x1 + R
(
u(j1−1)x2,(k−1)x1 , . . . , u(j1−1)x2; . . . ; u(k−1)x1 , . . . , u

)
j1 ∈ N

0 � j2 � k − 1 (24)

and the reverse transformation

uj1x2,j2x1 = uj1x,j2x1 − R̃
(
u(j1−1)x,(k−1)x1 , . . . , u(j1−1)x; . . . ; u(k−1)x1 , . . . , u

)
do not change leading terms in Gi . In other words, when finding IMSs, instead of equations
(19)–(21) we can work with the Dx-presentation

ut = E(u, . . . , unx) u = u(x1, x2, t) n ∈ N (25)

ukx1 = q
(
u(k−1)x1 , u(k−2)x1 , . . . , ux1 , u

)
k ∈ N (26)

Gi

(
uαix,ix1 , . . . , u

) = 0 αi ∈ N i = l, k − 1 0 � l � k − 1 (27)

that are considerably more compact and simple.
We now consider concrete schemes for constructing IMSs (already in the presentation

(25)–(27)) and first of all a direct approach.

Step 1. Consider a system initially consisting of two equations only, namely, equation (25)
with a known right-hand side, d-adjoint to an equation of interest, and a soliton envelope
equation (26) with some predetermined k (here already the form of the right-hand side q is
unknown). Calculate the compatibility condition

ut,kx1 − ukx1,t = 0 (28)

for them. This expression is a polynomial with respect to the kernels uj1x,j2x1 (j1 = 1, n;
j2 = 0, k − 1) or, in view of (24), with respect to derivatives uj1x2,j2x1 correspondingly. (The
dependence on the derivatives uj2x1 (j2 = 0, k − 1) is unknown because it is associated
with q.)

The next step depends on what supposition is chosen about the essence of (28). Two
variants are possible:

(a) There exists a function q such that (28) becomes the identity 0 ≡ 0, i.e. any equations
Gi = 0 setting linkages between the parameters are absent, and we want to find its form.

(b) The equation obtained is satisfied for some function q with regard to all or possibly only
some of the linkage equations (27) in the IMS sought.
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Step 2(a). In this case we have to obtain a system of equations for the function q for further
simplification and solving, or to prove its incompatibility for any q. To obtain such a system it
is necessary and sufficient to equate to zero coefficients at the different monomials composed
from the kernels uj1x,j2x1 (j2 �= 0), because in view of (24) this is equivalent to equating to
zero coefficients at the related monomials with uj1x2,j2x1 .

Step 2(b). The expression for (28) written through the derivatives of q has form (27) by itself,
and our goal here is to bring it together with (26) to form a compatible system. Differentiating
it with respect to x1 the necessary number of times and simplifying the resulting expressions,
one finds a set of relations of type (27) again. They can be separated into the linkage equations
and the conditions of their compatibility with (26) (the determining equations for q). Since
the first ones are optionally compatible with (25), the further construction and consideration
of the related equations are also necessary in turn. Here again two cases/steps are possible.

Step 3(a). The obtained set of relations (27) is final, and therefore only the fulfilment of the
compatibility conditions with (25) is necessary. The last ones are obtained by differentiating
(27) with respect to t and after simplification these are added to the equation determining q.

Step 3(b). The part of the compatibility conditions (see step 3(a)) is added to the relations of
type (27) obtained previously. After simplification they together make the new candidate for
(27) in the sought for IMS. The remaining relations are added to the determining equations
of q.

Further steps analogous to 2(b), 3(b) are repeated till construction of the system (25)–(27)
with the necessary number of equations (27) is complete (note 4). The process is finished at a
step of type 2(a) or 3(a). Simultaneously we obtain the set of compatibility conditions.

The next two examples with the second-order soliton envelope equation

ux1x1 = q(u, ux1) (29)

illustrate the ideas. Here and further for conciseness we will use the notation

uix,jx1 = uij uix = ui i � 0 j > 1. (30)

Example 4. Take the d-adjoint

ut = uxx u = u(x1, x2, t)

of the conventional heat equation. Its compatibility condition with (29) gives

utx1x1 − ux1x1t = 2u11u1quu01 + u2
1q2u + u2

11q2u01 = 0. (31)

Ignore the case without linkages (step 2(a)). Then here the only variant possible is

uxx1 = s(u, ux, ux1) (32)

with s being the solution of (31) for uxx1 . Since there can be only one linkage equation, (29),
(32) are the final IMS. The compatibility conditions

ux1x1x − uxx1x1 = u1qu + squ01 − u01su − qsu01 − ssu1 = 0

utxx1 − uxx1t = 2u1ssuu01 + 2u1u2suu01 + u2
1s2u + 2u2ssu1u01 + s2s2u01 + u2

2s2u1 = 0

together with (31) with respect to s make the system for q, s and are the determining equations
for the IMS. Solving them, e.g., by RifSimp, leads to expressions (10) from example 1.

Example 5. Slightly change the equation introducing the nonlinearity to

ut = uuxx u = u(x1, x2, t).
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Again its compatibility condition with (29) is

2uu1u11quu01 + uu2
1q2u + uu2

11q2u01 − u01u2qu01 + u2q + 2u01u21 = 0.

And the first possible case for the linkage equation is obviously

uxxx1 = s
(
u, ux, ux1 , uxx1 , uxx

)
. (33)

The other compatibility conditions will be

ux1x1xx − uxxx1x1 = 2u1u11quu01 + u2
1q2u − u1qusu11 + u2qu + u2

11q2u01

−u11su11qu01 + squ01 − u01su − qsu01 − u11su1 − ssu2 = 0 (34)

utxxx1 − uxxx1t = E1([s], u, u1, u01, u11, u2, u3, u4) = 0 (26 terms totally).

We can, however, continue the procedure, interpreting (34) as the new linkage equation
involving (33), so that

uxx1 = s
(
u, ux, ux1 , uxx

)
. (35)

The related IMS will consist of equations (29), (35) with the determining equations

utxx1 − uxx1t = 2uu1quu01s + uu2
1q2u + uq2u01s

2 − u01u2qu01 + 2u01u1su

+ 2u01ssu01 + 2u01u2su1 + 2u01u3su2 + u2q = 0

ux1x1x − uxx1x1 = u1qu + qu01s − u1susu2 − u01su − su01su2s − su01q − u2su1su2

− su1s − u3s
2
u2

= 0

utxx1 − uxx1t = E2([s], u, u1, u01, u2, u3) = 0 (17 terms totally)

to q and s.
In contrast to the previous example, here the determining systems for both IMSs are

inconsistent.

The direct scheme considered is complicated for realization, when n or k > 2. The
difficulty is that although every step is reduced to the standard operations for work with
overdetermined systems, simultaneously they demand a practically interactive mode when
considering a large number of branches. An indirect approach may be more effective. In this
case we consistently consider the variants of Gi with all possible leading derivatives, without
loss of generality, simultaneously assuming their resolution with respect to the last ones, i.e.
we look over all the systems

ut = E(u, . . . , unx) u = u(x1, x2, t) n ∈ N
(36)

ukx1 = q
(
u(k−1)x1 , u(k−2)x1 , . . . , ux1 , u

)
k ∈ N

uαix,ix1 = gi

(
uαix,(i−1)x1 , . . . , u

) = 0 αi ∈ N i = l, k − 1 0 � l � k − 1 (37)

The compatibility conditions for them are

ut,kx1 − ukx1,t = 0 ut,αix,ix1 − uαix,ix1,t = 0 ukx1,αix − uαix,kx1 = 0

to make the determining equations for q and gi directly suitable for automatic simplification
and solving. The consequence of this is the necessity to deal with all cases assumable by
proposition 4, while a number of them may be incompatible with a concrete form of (36) (see,
e.g., examples 4 and 7). Such ‘empty’ branches, however, are comparatively quickly detected
and discarded during calculations. For small n and k a mixed strategy is effective as well. It
uses both steps from the direct scheme and the substitutions (37) which are reasonable at each
step.
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2.3. Multisoliton formulae of superposition. A universal form for IMSs collective and
abstract variable differential operators

As a result of the procedures described above, in the case when the determining equations
have a solution, we obtain system (25)–(27) written in terms of the operator Dx = ∂

∂x1
+ ∂

∂x2
.

Taking into account (23), this system is brought to the form (19)–(21) already with respect
to the differential operators on x1 and x2 convenient for deriving a SF or an investigation of
such. Inversely, form (25)–(27) can be obtained from (19)–(21) by the formal replacement
ux2 = Dxu − ux1 and this in turn plays no less of an important role.

First of all, since a perturbation in a SF is arbitrary (the case l �= 0), it can again include
in itself a soliton component or components, so that the variable x2 can be split further, say as

∂

∂x2
= ∂

∂x ′
2

+ · · · +
∂

∂x ′
m

+
∂

∂x ′
m+1

m � 2

where x ′
i (i = 2,m) are associated with the solitons in this perturbation. On the other hand,

x1 can, in principle, be associated with any of the available solitons, and for each of them one
can write respectively (the prime is discarded hereafter)

ukxj
= q

(
u(k−1)xj

, u(k−2)xj
, . . . , uxj

, u
)

j = 1,m

Gi

(
uαix,ixj

, . . . , u
) = 0 i = l, k − 1 (38)

u = u(x1, . . . ; xm+1; t)

Here the subscript ‘x’, e.g., ux , already denotes the action of the new, ‘extended’, operator Dx

Dx = ∂

∂x1
+ · · · +

∂

∂xm

+
∂

∂xm+1
.

By this means, a construction of an IMS for ‘m solitons plus a perturbation’ reduces to simple
multiplication of relations already found for the case of ‘one soliton plus a perturbation’ and
further verification of compatibility for this new set of equations. Of course, in the same way
one can couple IMSs corresponding to different types of solitons (for instance, bell-shaped
and kink-shaped ones).

Note 5. It is necessary to remember that systems constructed in this manner may appear to
be incompatible, that is multisoliton solutions may simply not exist, e.g., in the case of kinks
with different asymptotes.

Next, the same form equations such as (26), (27) with regard to the change x1 −→ t1

ukt1 = q
(
u(k−1)t1 , u(k−2)t1 , . . . , ut1 , u

)
(39)

Gi

(
uαix,it1 , . . . , u

) = 0 i = l, k − 1 u = u(x, t1, t2)

will take place, if the t variable is split as

∂

∂t
= ∂

∂t1
+

∂

∂t2

and then considered instead of x (or together with x).
Finally, the equations

ukτ = q
(
u(k−1)τ , u(k−2)τ , . . . , uτ , u

)
(40)

Gi

(
uαix,iτ , . . . , u

) = 0 i = l, k − 1 u = u(x, t, τ )

obtained from (26), (27) by the formal change ∂
∂x1

−→ ∂
∂τ

(Dx ≡ ∂
∂x

in this case) also have
the sense and will be compatible with (25) and each other. Such a subsystem determines the
dependence of u on some free parameter τ (see note 6).
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In all three cases (the splitting of x or/and t with the related ‘soliton’ envelope equation,
the case of a free parameter) IMSs (38)–(40) associated with an initial equation

ut = E(u, . . . , unx) n ∈ N (41)

can be written in the unified form

ukz = q
(
u(k−1)z, u(k−2)z, . . . , uz, u

)
(42)

Gi

(
uαix,iz, . . . , u

) = 0 i = l, k − 1, k, l ∈ N (43)

Here the notation ut , ux and so on corresponds to differentiation with respect to all the related
split coordinates

ui1t ≡ Di1
t u =

(
∂

∂t1
+ · · · +

∂

∂tj1

)i1

u ui2x ≡ Di2
x u =

(
∂

∂x1
+ · · · +

∂

∂xj2

)i2

u

and the operator ∂
∂z

(uz and so on) corresponds to any of the following real differential
operators:

∂

∂z
= ∂

∂ti
u = u(x1, . . . , xj2; t1, . . . , tj1) 1 � i � j1 j1 ∈ N (44)

∂

∂z
= ∂

∂xj

u = u(x1, . . . , xj2; t1, . . . , tj1) 1 � j � j2 j2 ∈ N (45)

∂

∂z
= ∂

∂τ
u = u(x, t, τ ) (46)

(ti , xj are some of the ‘soliton’ variables). Because of this, it is reasonable to call the unified
form (41)–(43) the universal form for IMSs and the operators Dx (Dt) and ∂

∂z
respectively

the collective and abstract variable differentiation operators. (In doing so, however, it is
important to remember that the concrete coordinate equations (42), (43) will be of a quite
different sense, and will lead to different expressions for the function u.)

Note 6. In the case (46), ∂
∂z

= ∂
∂τ

, equations (43) can be considered as special type of
generalization of nonclassical symmetries. In fact, equations (41) and (43) themselves,
without (42), make the compatible subsystem. In doing so, they determine the dependence of
the function u(x, t, τ ) on the parameter τ , analogous to the equation

uτ = σ(u, ux, uxx, . . .)

with σ being a classical symmetry [15]. (The latter is the particular case of (43).) While (42)
means that this dependence is fixed.

Such symmetries are associated with the invariance of IMSs when (44) or (45) with
respect to the trivial transformations xj −→ x̃j + τ or ti −→ t̃ i + τ , and the related invariant
solutions [15] correspond to solutions u(x, t) without a soliton component.

We stress, separately, that the above-mentioned IMSs and symmetries are directly linked
to one another, but that an IMS involves in itself an additional requirement—the splitting of
some concrete variable.

3. Some examples of reaction–diffusion equations with the simplest IMSs

Below, the technique outlined in the previous section is illustrated by means of several
examples. In doing so, some other aspects, in particular the possibility of the classification of
equations, will be considered as well.
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Example 6. Consider the following problem. Assume that we have the general form second-
order evolution equation or, more precisely, already its d-adjoint, see (23), version

ut = f (u, ux, uxx) fuxx
�= 0 (47)

and we wish to determine all permissible f in (47) and q in the related soliton envelope
equation

ux1x1 = q(u, ux1) (48)

such that any linkage equations in the IMS are absent. In other words, their compatibility
condition has to be satisfied identically. The last one is the polynomial with respect to uxxx1 ,
namely

utx1x1 − ux1x1t = B2u
2
xxx1

+ B1uxxx1 + B0 = 0

where the coefficients Bi (i = 0, 2) are written as

B2 = f2u2

B1 = u01fuu2 + u11fu1u2

B0 = 2u01u11fuu1 + u2
01f2u − u01fuqu01 + fuq + u2

11f2u1 + u1fu1qu + 2u1u11fu2quu01

+ u2
1fu2q2u + u2fu2qu + u2

11fu2q2u01 − f qu

(Here the shortened notation of (30) has again been used.) Since, obviously, the Bi do not
depend on u2xx1 (u2x2x1), we can equate them to zero, i.e. Bi = 0, and one has from B2 = 0

f (u, u1, u2) = f0(u, u1) + f1(u, u1)u2 f1 �= 0 (49)

In the same manner, after substituting (49) into equations B1 = 0 and B0 = 0, we should
equate to zero the coefficients of the different powers of u2 and then u11, so that finally we
arrive at the system

f1u1
= 0 f1u = 0 u01f12u − u01f1uqu01 + f1uq + u1f1u1

qu = 0

f02u1
+ f1q2u01 = 0 u01f0uu1

+ u1quu01f1 = 0 (50)

u2
01f02u − u01f0uqu01 + f0uq + u1f0u1

qu + u2
1f1q2u − f0qu = 0.

As seen, f1 is a constant

f1(u, u1) = c1 = const �= 0 (51)

and system (50) is simplified further

f02u1
+ c1q2u01 = 0

u01f0uu1
+ c1u1quu01 = 0 (52)

u2
01f02u − u01f0uqu01 + f0uq + u1f0u1

qu + c1u
2
1q2u − f0qu = 0.

Equation (52) leads to an additional separation of the variables, and we must set

f0(u, u1) = f00(u) + f01(u)u1 + f02(u)u2
1 (53)

q(u, u01) = q0(u) + q1(u)u01 + q2(u)u2
01 (54)

with
f02(u) = −c2q2(u) c2 = const (55)

After that it is possible to equate to zero the coefficients of the powers of u1 and then u01 in
the remaining equations. Thus one has the relations

f01(u) = c2 (56)
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q1(u) = c3 c3 = const (57)

together with the equations

q02u − q0uq2 − q2uq0 = 0 (58)

f002u − f00uq2 − f00q2u = 0 (59)

f00uq0 − f00q0u = 0 (60)

and, as a result, taking into account (49), (51), (53)–(57), one obtains the final form of f in
(47) and q in (48)

ut = f00(u) + c2ux − c1q2(u)u2
x + c1uxx c1 �= 0 (61)

ux1x1 = q0(u) + c3ux1 + q2(u)u2
x1

(62)

with the additional linkages (58)–(60) between q0(u), q2(u) and f00(u). It is easy to verify
that the last relations correspond to the fact that (61) and (62) can be obtained from the related
second-order linear equations by the simple point transformation

u −→ g(u) : guu + q2(u)gu = 0.

This result is not accidental. It can be shown that in the general case the absence of linkage
equations indicates linearization of an equation by means of a point transformation. This
example also demonstrates that we can work with equations of a general form for the purpose
of their classification.

Example 7. For the next example we try to find the IMSs associated again with the second-
order soliton envelope equation

ux1x1 = q
(
u, ux1

)
(63)

for the following equation:

ut = f (u)ux + uxx fu �= 0 (64)

and construct the related SFs.
In the first step, calculation of the compatibility condition for (63) and (64) brings us to

the expression

u2
11q2u01 + 2u11

(
u01fu + u1quu01

)
+ u2

1quu + u1
(
u2

01f2u − u01fuqu01 + fuq
) = 0. (65)

As a consequence, the only type of linkage equation possible is

uxx1 = g
(
u, ux1 , ux

)
. (66)

(According to proposition 4, one more case uxxx1 = g
(
u, ux1 , ux

)
could be assumed.)

In the next step, we have to calculate the compatibility conditions between (66) and (63)
and between (66) and (64). The resulting equations are as follows:

u2
2g2u1 + u2

(
u01fu + 2u1guu1 + 2gu01u1g

)
+ u01u

2
1f2u − u01u1fugu01 − u2

1fugu1

+ 2u1fug + 2u1guu01g + u2
1g2u + g2u01g

2 = 0 (67)

u1qu + qu01g − u01gu − gu01q − gu1g = 0 (68)

for utxx1 − uxx1t = 0 and ux1x1x − uxx1x1 = 0, respectively.
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In principle, the system (65), (67), (68) is already suitable for processing by specialized
packages such as CRACK [9] or RifSimp [10]. But here it can be further simplified. We see
that the coefficients at the powers of u2 in (67) have to be equal to zero, g2u1 = 0, i.e.

g(u, u01, u1) = g0(u, u01) + g1(u, u01)u1. (69)

Taking into account the last expression (66) for g, RifSimp, e.g., gives the following simplified
system for the unknown functions g0(u, u01), g1(u, u01), q(u, u01) and f (u):

g1u = − g2
1

u01
g1u01

= g1

u01
g0u = g0g1

u01
g0u01

= g0

u01

qu = −2g2
1 qu01 = 2u01g1 + q

u01
fu = −2

g1g0

u2
01

which is easily integrated

q(u, u01) = 2u2
01

u + c1
+ λu01 (70)

g0(u, u01) = −c2(u + c1)u01

2
(71)

g1(u, u01) = u01

u + c1
(72)

f (u) = c2u + c3 c1, c2, c3, λ = const (73)

As seen from (73), there exists the only equation of the type (64) with the second-order soliton
envelope equation, namely the well-known Burgers’ equation.

Taking into account expressions (70)–(73), and without loss of generality setting
c3 = 0, c2 = −1 as is usual for the Burgers’ equation, in the ∂

∂x1
− ∂

∂x2
-presentation, one

finally has

ut + (ux1 + ux2)u − ux1x1 − 2ux1x2 − ux2x2 = 0 (74)

ux1x1 = 2u2
x1

u + c1
+ λux1 (75)

ux2x1 = ux1

(
ux2 − ux1

u + c1
+

u + c1

2
− λ

)
. (76)

The IMS (75), (76) when λ �= 0 leads to the following SF (see the appendix for the
calculation details):

u(x1, x2, t) = −2

[
λ eλx1+λ(c1−λ)t + θx2

λ eλx1+λ(c1−λ)t + θ

]
− c1 + 2λ θ = θ(x2, t), λ �= 0 (77)

In so doing, the function θ(x2, t) satisfies the equation

θt − θx2x2 + (2λ − c1)θx2 = 0

and (77) has the limits

lim
x1→+∞ u(x1, x2, t) = −c1 lim

x1→−∞ u(x1, x2, t) = −2
θx2

θ
− c1 + 2λ. (78)

In other words, the combination (78) itself satisfies the Burgers’ equation.
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Analogously, for λ = 0, one obtains the SF

u(x1, x2, t) = − 2(1 + θx2)

(x1 + c1t + θ)
− c1 θ = θ(x2, t) (79)

when θ(x2, t) satisfies the equation

θt − θx2x2 − c1θx2 = 0.

Here, however, one has

lim
x1→∞ u(x1, x2, t) = −c1

and we obtain no combination of θ(x2, t) satisfying the initial equation.
By this means, from the IMS (75), (76) we have two SFs, (77) and (79). In both cases,

setting θ = 0, we have the unperturbed solitonic solutions.

Example 8. Although the theory allows us to pose the problem of finding IMSs generally
enough, e.g., ‘find all the third-order evolution equations with all the fourth-order envelope
equations’, at the present moment, however, a similar problem for the second order is likely
to be insoluble for a reasonable CPU time. Moreover, in doing so, on the one hand, in the
framework of computer algorithms it is necessary to process and analyse the results of many
branches and, on the other hand, not all of the structures found are associated with interesting
solution dynamics.

In this example we will consider the following family of reaction–diffusion equations:

ut = f0(u) + f1(u)ux + f2(u)u2
x + uxx (80)

where the fi and u are real-value functions. Such types of modified diffusion equations appear
in a number of interesting models (see, e.g., [16, 17]). Our goal here will be to determine
all such equations having the simplest kink solution analogous to the Burgers’ one associated
with the soliton envelope equation

ux1x1 = ux1

u

(
2ux1 + λu

)
λ �= 0 (81)

i.e. the same type of equation as (75), but with λ �= 0 (here the pole case with λ = 0 leads to
a nonphysical result, and c1 = 0 without loss of generality).

The compatibility conditions utx1x1 − ux1x1t = 0 for (80) and (81) are as follows:

u2
11(q2u01 + 2f2) + 2u11

(
u01f1u + 2u01u1f2u + u1quu01

)
+ u2

01f02u − u01f0uqu01

+ f0uq + u2
01u1f12u − u01u1f1uqu01 + u1f1uq + u2

01u
2
1f22u

−u01u
2
1f2uqu01 + u2

1f2uq + u2
1q2u − quf0 + u2

1quf2 = 0 (82)

so that only the simplest linkage equation is possible

uxx1 = g
(
u, ux1 , ux

)
. (83)

(Another of the linkage equations according to proposition 4, uxxx1 = g
(
u, ux1 , ux, uxx1

)
,

appears to be incompatible with the concrete form (80).) And we have

u2
2g2u1 + u2

(
u01f1u + 2u01u1f2u + 2u1guu1 + 2gu01u1g + 2f2g

)
+ u01u1f02u − u01f0ugu01

−u1f0ugu1 + f0ug + u01u
2
1f12u − u01u1f1ugu01 − u2

1f1ugu1 + 2u1f1ug

+ u01u
3
1f22u − u01u

2
1f2ugu01 − u3

1f2ugu1 + 3u2
1f2ug

+ 2u1guu01g + u2
1g2u − guf0 + u2

1guf2 + g2u01g
2 = 0 (84)
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u1qu + qu01g − u01gu − gu01q − gu1g = 0 (85)

as its compatibility conditions with (80) and (81), respectively.
The equations (82), (84), (85) with g instead of u11 in (82) make the system for

determining the functions f0, f1, f2 and q, g and can be simplified by the above-mentioned
computer packages. To avoid consideration of the trivial cases of (80) linearizable by point
transformations (see, e.g., (59) and (61)), we will immediately introduce the inequality related
to the system under consideration(

f02u + f0uf2 + f0f2u

)2
+ f1

2
u �= 0 (86)

before performing the calculations.
Simplification of (82), (84)–(86) gives us several different variants. A further analysis

shows that only two of them may have dynamics that are interesting from the physical
viewpoint, namely

g0u01
= g0

u01
g0u = g0(uf2 + 2)

2u
g1 = u01(2 − uf2)

2u

f0 = 0 f1u = −g0(uf2 + 2)

uu01
f2u = f 2

2

2

(87)

and

g0u = 0 g0u01
= g0

u01
g1 = 2

u01

u

f02u = 2

u2u2
01

(
uu2

01f0u + u2f2g
2
0 + 2ug2

0 − u2
01f0

)
(88)

f1u = −2
g0(uf2 + 2)

uu01
f2u = −2

(1 + uf2)

u2

with

g(u, u01, u1) = g0(u, u01) + g1(u, u01)u1. (89)

Proceeding in the same way as in the previous example, the forms of fi(u) (i = 0, 2) in (80)
and the related IMSs and SFs are easily found. Below the final results are presented.

The system (87) with (89) in the general case (it also contains the Burgers case as a
degenerate example) leads to the following expression:

ut =
(

2c1c2

c1 − u
+ c3

)
ux +

(
2

c1 − u

)
u2

x + uxx c1, c2, c3 = const c1c2 �= 0 (90)

(at c1c2 = 0, according to (86), it is linearizable by a point transformation) with the IMS (81),
(83) in the Dx-presentation

ux1x1 = ux1

u

(
2ux1 + λu

)
λ �= 0

uxx1 = ux1

u − c1

[
c2u + (2u − c1)

ux

u

]
.

The latter corresponds to the SF

u(x1, x2, t) = A(x2, t)

eλ[x1+(λ−2c2−c3)t]+ϕ(x2,t) + 1
(91)

where the phase ϕ(x2, t) is linked by the integral relation with amplitude A(x2, t)

ϕ(x2, t) =
∫ (

Ax2 + c2A

A − c1
− λ

)
dx2.
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The solutions (91) have the properties (here λ > 0 for definiteness)

lim
x1→+∞ u(x1, x2, t) = 0 lim

x1→−∞ u(x1, x2, t) = A(x2, t).

Simply speaking, the function A is an arbitrary solution of the original equation (90).
Solving the other system (88) brings a simpler result. The NPDE (80) is as follows:

ut = c2
1c2 + c4u + c3u

2 +
(

2
c1c2

u
+ c5

)
ux +

(
c2 − 2u

u2

)
u2

x + uxx

ci = const i = 1, 5 (92)

and it is not linearizable directly if (ci ∈ R on the condition)

(c1c2)
2 +

[
c2

(
c4 − 2c2

1

)]2 �= 0.

While the IMS has the form

ux1x1 = ux1

u
(2ux1 + λu) λ �= 0

uxx1 = c1ux1 + 2
ux1ux

u

and at c1 = λ corresponds to the simplest nontrivial SF

u(x1, x2, t) = 1

eλx1+(c4−c5λ−λ2)t + ϕ(x2, t)
(93)

with the properties (λ > 0)

lim
x1→+∞ u(x1, x2, t) = 0 lim

x1→−∞ u(x1, x2, t) = 1

ϕ(x2, t)

That is ϕ(x2, t)
−1 satisfies the initial equation (92). As seen from (93), the characteristic of

the present SF is that in contrast to (91), in certain situations, the appearance of a singularity
on the real axis is possible.

4. IMSs and truncated singular expansions

In the work [1] not only the multidimensional superposition principle itself was introduced,
but also with its help the linkage between a presentation of solutions by truncated singular
expansions [3, 4] and existence of solitons in the related equations was shown as well. In
so doing, from the standpoint of the multidimensional superposition principle instead of the
NPDEs themselves, we considered the equations of the system

Vx = −V 2 − S

2

Vt = CV 2 − CxV +
CS + Cxx

2
V = V (x, t) S = S(x, t) C = C(x, t).

(S and C are subject to the formal compatibility condition St + Cxxx + 2SCx + CSx = 0) for
the basic function V of the above-mentioned expansions

u(x, t) =
0∑

i=m

wi(S, C, Sx, Cx, St , Ct , . . .)V
i m ∈ N (94)

The SF for V obtained in such a way together with the auxiliary expressions for C and S
thereafter lead, in view of (94), to SFs for concrete NPDEs.
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To be more precise, it was demonstrated that the functions V and S,C can be given in the
following manner (t was also split there):

V =
(

k + θx2

2

)
tanh

(
kx1 + ωt1 + θ

2

)
− θx2x2

2
(
k + θx2

) θ = θ(x2, t2)

S = −
(
k + θx2

)
2

2

− 3

2

(
θx2x2

k + θx2

)2

+
θx2x2x2

k + θx2

(95)

C = −
(

ω + θt2

k + θx2

)
k, ω = const k �= 0

or

V = 1 + θx2

x1 + ωt1 + θ
− θx2x2

2
(
1 + θx2

) θ = θ(x2, t2)

S = −3

2

(
θx2x2

1 + θx2

)2

+
θx2x2x2

1 + θx2

(96)

C = −
(

ω + θt2

1 + θx2

)
ω = const

if the related expression (94) with θ = 0 is a solution of an equation of interest, and
simultaneously θ = 0 satisfies its singular manifold equation. In so doing, expression (94) is
the sought for SF.

Hence, in view of the form of (94), all such SFs will have the following structure:

u =
0∑

i=m

ϕi+1(x2, t)

(
ekx1+ϕ0(x2,t)

ekx1+ϕ0(x2,t) + 1

)i

k �= 0

for the case (95) and

u =
0∑

i=m

ϕi+1(x2, t)

(x1 + ϕ0(x2, t))i

for (96) respectively that determines a soliton envelope equation. The last one can be easily
derived from the appropriate ‘generating’ equation

u(m+1)ξ = 0

where

ξ = ekx1+ϕ0

ekx1+ϕ0 + 1
k �= 0, ϕ0 = ϕ0(x2, t)

or

ξ = 1

x1 + ϕ0
ϕ0 = ϕ0(x2, t)

In particular, when m = 1 one has for the first case of ξ

2ux1x1x1ux1 − 3u2
x1x1

+ k2u2
x1

= 0

Setting k = 0, we also arrive at the equation corresponding to the second case. As a result, we
can avoid the use of truncated series and consider a suitable soliton envelope equation

Q
(
u, ux1 , . . . , u(m+1)x1

) = 0

instead. The latter together with an original NPDE (more precisely its d-adjoint) make an
initial set of equations which can be processed by any of the existing specialized computer
algebra programs.
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As examples, we give the results for two well-known equations, namely, the KdV and
MKdV equations.

Example 9 (The MKdV equation). Since the MKdV has the truncated singular expansion
with m = 1 [3], the initial system for u(x1, x2, t) has the form

ut − 6u2ux + uxxx = 0 u = u(x1, x2, t) 2ux1x1x1ux1 − 3u2
x1x1

+ k2u2
x1

= 0 (97)

(we will consider only the kink case and set k > 0 for definiteness, and without loss of
generality) and it is closed by the following equations:

ux1x ∓ 2uux1 = 0 ux1x1x ∓ 2
(
u2

x1
+ uux1x1

) = 0

describing the linkages to the three ‘parameters’ associated with the soliton envelope
equation (97). The related SF,

u(x1, x2, t) = ±
[(

k + θx2

2

)
tanh

(
kx1 + k3

2 t + θ

2

)
− θx2x2

2
(
k + θx2

)
]

θ = θ(x2, t) k > 0

with θ satisfying the equation

2θt + 2θx2x2x2 − θ3
x2

− 3kθ2
x2

− 3k2θx2 − 3θ2
x2x2

θx2 + k
= 0 θ = θ(x2, t)

(the calibration

ϕ0(x2, t) = k3

2
t + θ(x2, t)

has been used for clarity as before in example 7, appendix) corresponds to the superposition
of the kink

lim
θ→0

u(x1, x2, t) = ±k

2
tanh

(
kx1 + k3

2 t

2

)

and an arbitrary perturbation

lim
x1→+∞ u(x1, x2, t) = ±

[(
k + θx2

2

)
− θx2x2

2
(
k + θx2

)
]

lim
x1→−∞ u(x1, x2, t) = ±

[
−

(
k + θx2

2

)
− θx2x2

2
(
k + θx2

)
]

.

This shows that in the process of their interaction the latter modulates the kink’s amplitude and
phase and also leads to the appearance of an additional additive component in the solution.

Example 10 (The KdV equation). Since for the KdV

ut + 2uux + uxxx = 0 u = u(x1, x2, t)

m = 2 [3], it requires more computational time than when m = 1, so we consider its potential
version (u = vx) instead. The initial system has the form

vt + v2
x + vxxx = 0 v = v(x1, x2, t) 2vx1x1x1vx1 − 3v2

x1x1
+ k2v2

x1
= 0

(as before let k > 0) and is closed by the equations

3vx1xxxv
2
x1

+ 3v3
x1x

+ 2v3
x1

vxx − 6vx1vx1xvx1xx = 0 3vx1x1xvx1 + v3
x1

− 3vx1xvx1x1 = 0.
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As a result, for the KdV one has the following expression
(
u = vx1 + vx2

)
:

u(x1, x2, t) = −3

2

(
k + θx2

)2
tanh2

(
kx1 − k3t + θ

2

)
+ 3θx2x2 tanh

(
kx1 − k3t + θ

2

)

+
3

4

(
k + θx2

)2
+

3

4

(
θx2x2

k + θx2

)2

− 3

2

(
θx2x2x2

k + θx2

)
+

3

4
k2

θ = θ(x2, t) k > 0

after the calibration

ϕ0(x2, t) = −k3t + θ(x2, t)

with θ(x2, t) being a solution of the equation

2θt + 2θx2x2x2 − θ3
x2

− 3kθ2
x2

− 3θ2
x2x2

θx2 + k
= 0 θ = θ(x2, t).

Again, we see that a perturbation modulates the phase, but the general deformation of the
envelope is much more complicated here. In so doing, the separated soliton and a localized
(θ(±∞, t) = θ±∞ = const) perturbation will have the following form (before and after an
interaction):

lim
x2→±∞ u(x1, x2, t) = 3

2
k2

[
1 − tanh2

(
kx1 − k3t + θ±∞

2

)]
and

lim
x1→±∞ u(x1, x2, t) = ±3θx2x2 − 3

4

(
k + θx2

)2
+

3

4

(
θx2x2

k + θx2

)2

− 3

2

(
θx2x2x2

k + θx2

)
+

3

4
k2

respectively.

Note 7. An IMS with the above types of soliton envelopes can be an alternative to the
standard technique of the singular manifold method with a substitution of truncated expansions.
Moreover, for equations possessing the Painlevé property but not admitting truncation of such
expansions, IMSs can be applied as an approach for summing the related infinite Laurent
series and studying their properties.
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Appendix

Integrating equation (75), the soliton envelope equation, one has

u(x1, x2, t) = −2

[
λ eλx1 + ϕ1(x2, t)

eλx1 + ϕ0(x2, t)

]
− c1 + 2λ (A1)

so that the functions ϕ0 and ϕ1 are still undefined here. After substitution of (A1) into (76),
we have the linkage between them

ϕ1 = ϕ0x2

while after the separation of the variables x2 and x1 (74) leads to the two equations

−ϕ0tx2
ϕ0 + ϕ0tϕ0x2

+ ϕ03x2
ϕ0 − ϕ02x2

ϕ0x2
+ (c1 − 2λ)

(
ϕ02x2

ϕ0 − ϕ0
2
x2

) = 0

−ϕ0tx2
+ λϕ0t + ϕ03x2

+ (c1 − 3λ)ϕ02x2
+ λ(3λ − 2c1)ϕ0x2

+ λ2(c1 − λ)ϕ0 = 0

which reduce to the single equation for ϕ0

ϕ0t = ϕ02x2
+ (c1 − 2λ)ϕ0x2

+ λ(λ − c1)ϕ0 ϕ0 = ϕ0(x2, t)

Next, introducing another function according to the relation

ϕ0(x2, t) = eλ(λ−c1)t θ(x2, t)

the new function θ(x2, t) will already satisfy the equation

θt = θx2x2 + (c1 − 2λ)θx2 θ = θ(x2, t)

possessing the trivial solution θ = 0.
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